Presentación de Bacteriocina 3xBiotics

La investigación antibacteriana, desde hace 50 años, se ha centrado en satisfacer las necesidades médicas causadas por patógenos infecciosos potencialmente mortales. El uso indiscriminado de antibióticos sintéticos ha provocado el desarrollo de muchos gérmenes resistentes a ellos. También un problema importante con la administración de antibióticos en medicina alopática, ya sea externa o internamente, es la creación de disbiosis que conduce a una multiplicación incontrolada de patógenos (por ejemplo, el desarrollo de candidiasis oral/vaginal como resultado de los antibióticos).

La modificación de la microbiota intestinal puede provocar muchas enfermedades físicas y mentales. Además, los antibióticos sintéticos tienen muchos efectos secundarios y contraindicaciones.

La ventaja de utilizar plantas medicinales fermentadas es que tienen un doble efecto sobre el patógeno y la inmunidad, mayor biodisponibilidad, ingesta pre/pro y posbiótica.

Por eso Pro Natura ayuda a los pacientes con un nuevo producto: Bacteriocin 3xBiotics.

bacteriocinas1 son pequeños péptidos producidos por bacterias beneficiosas (especialmente BAL), cuya propiedad es destruir otras bacterias actuando sobre ellas bloqueando la síntesis de proteínas. Por su mecanismo de acción, representan una potencial solución para resolver la crisis actual (aumento de la resistencia a los antibióticos2).

artemisia (ajenjo) es una planta medicinal, muy utilizada en la medicina tradicional (desde lavado vaginal, trastornos gastrointestinales, cánceres3), which produces secondary metabolites, has direct antimicrobial effects on many resistant pathogenic bacteria, such as: Tuberculosis micobacteriana4, Escheria coli5, píloro de Helicobacter6. In particular, one of the bioactive compounds, artemisinin7, has effective results against Gram-positive bacteria, and its antibacterial activity is similar to streptomycin (bactericide). Wormwood is also recommended due to its immunomodulatory, antiviral, antifungal, antiparasitic, anti-inflammatory, antioxidant effects8.

Cúrcuma is a panacea, the over 7 thousand studies conducted with this plant, showing countless beneficial effects (Alzheimer’s9, pancreatic/ lung/ breast cancer10, inflammatory diseases – rheumatoid arthritis, osteoarthritis11, skin conditions – Vitiligo12, Psoriasis13). La cúrcuma se utiliza como ingrediente básico en la cocina asiática, y ayuda a mantener la salud de las personas en zonas con mala higiene.

En la medicina ayurvédica se utiliza como antiséptico, antibacteriano y antiinflamatorio. La investigación actual sugiere efectos positivos contra el género. Salmonela14, y una fuerte acción fungicida15. La curcumina, el principal ingrediente activo de la cúrcuma, puede actuar no sólo como un compuesto antifúngico y antibacteriano, sino también como un compuesto antiviral, inhibiendo la replicación en una amplia gama de virus (Zika16, VHS-117, gripe A18).

La investigación química ha demostrado la presencia de varios compuestos beneficiosos, como flavonoides, ácido ascórbico, tocoferoles, ácido cítrico, esteroles y minerales, en semillas de pomelo. Su eficacia ha sido reportada19 against over 800 bacterial and viral strains, numerous fungi and a large number of unicellular (Entamoeba histolytica20)/ multicellular (lombriz intestinal21) parasites. It has been shown to help inhibit the proliferation of Candida albicans22, a yeast that can affect probiotic bacteria and affect the health of the gastrointestinal tract. Naringenin, a bioactive component of grapefruit seeds, showed gastroprotective activity, especially by inhibiting helicobacter pylori23.

Black garlic is obtained from fresh garlic (Allium sativum L.) which has been fermented for a period of time at a controlled high temperature (60–90 ° C) and under controlled high humidity (80–90%). Compared to fresh garlic, black garlic is sweeter, does not release a strong flavor due to its low allicin content, but has increased bioactivity, the phenolic content is 5-8 times higher than that of fresh garlic, so it has an activity much higher antioxidant24. In terms of its medicinal properties, black garlic has been described as antimicrobial, antiseptic, antiviral, antioxidant, immunostimulant, cardioprotective, hypoglycemic and anticancer25. Its properties are related to the bioactive molecules of garlic, such as its organosulfur compounds and non-volatile amino acids (thiosulfinates). These bioactive molecules also include reducing sugars, minerals, saponins and vitamins (A, B and C complex). Black garlic significantly suppresses the growth of the fungus penicillium citrio26 y también actúa sobre las bacterias Staphylococcus aureus, Escherichia coli, and Bacillus subtilis27.

Cordyceps, considered the mushroom of kings / gods, is the most famous medicinal mushroom being used since antiquity in Tibet. Over the last few years, a series of studies have been carried out to prove its antibacterial and antiviral properties. The results show the existence of the antibacterial polysaccharide extracted from the Cordyceps fungus, which is able to modify the microbial cell permeability28 (Escherichia coli, estafilococo aureus, Bacillus subtilis, Salmonella paratyphi y Aeruginosa de los Pseudomonas29). In addition to the results of antimicrobial activity, cordimin (antifungal peptide) has been isolated, which inhibits the mycelial growth of Bipolaris maydis, Mycosphaerella arachidicola, Rhizoctonia solani y Candida albicans30.

Ganoderma, known as the “mushroom of immortality”, contains over 40031 bioactive compounds needed to maintain the body’s health, including triterpenoids, polysaccharides, nucleotides, sterols, fatty acids and proteins / peptides, which have a number of medicinal effects, mainly antimicrobial (Staphylococcus aureus, Proteusbacillus vulgaris, Bacillus subtilis32), antifungal (Candida albicans33), antiviral (especially against herpes34 y VIH35), anti-inflammatory, antioxidant, as well as strengthening the immune system36 (activation of macrophages by polysaccharides, induces the release of cytokines that play a role in transmitting information between immune system cells and leukocytes).

Fermentación37 creates the necessary supply of pre / pro / parapro / postbiotics, which ensures both antiviral and antibacterial effects and the normalization of the intestinal microbiota. In traditional fermentation, unlike industrial fermentation, we will find a multitude of bacteriophages with beneficial regulatory effects on the microbiome.

A mixture of fermented plants in SCOBY cultures was also used: Green tea (Sinensis de la camelia); Neem (Azadirachta indica); olive leaves (Olea europaea); Bitter cucumber (Momordica Charantia); Mint (Mentha piperita) – cold plant, fights the inflammation that accompanies the infection; Black cumin (bunium persicum) – strong antioxidant38 y antifúngico39 especialmente efecto inhibitorio sobre Fusarium oxysporum; Oregano (Origanum vulgare) – hepatoprotective element40, antifungal (Aspergillus niger)41, antibacterial (Salmonella enteritidis)42 y fuerte antioxidante43; Licorice (Glycyrrhiza glabra).

These are an excellent source of vitamins (A, B1, B6, B9, B12, C, E, K), minerals (calcium, magnesium, potassium, sodium, iron and zinc-antiviral element).

Also, by the presence in the composition of: Propóleos que tiene un fuerte efecto antiviral44 (Varicella zoster (VZV), adenovirus type 5 (ADV), HSV1 (Herpex simplex virus)), antimicrobial effect45 (Enterococcus faecalis), antifungal46 (Cryptococcus neoformans), immunomodulatory, anti-inflammatory effect; Amrita® “food of the gods” – polyfoam pollen fermented in SCOBY consortium, is rich in polyphenols, flavonoids, organic silicon, vitamins, in addition it has a high content of active substances (antioxidants, hydroxy acids, SCFA- butyric acid favors a normal intestinal flora which in turn determines a high immunity); Shilajit & Triphala maintains and promotes a normal intestinal microbiome, Shilajit “mountain blood” the result of fermentation of plant mass at extremely high pressures, over a long period of time is the main source of humic substances (humic acid, fulvic acid)47 that play a role in stimulating the system immune (health enhancer)48, strong antioxidant49, antiviral (decreases HIV infection and replication, inhibits viral fusion between T44 cells)50 y mejora los procesos cognitivos51; The acetic acid resulting from the fermentations ensures the inhibition of the formation of the biofilm necessary for the development of pathogens (Streptococcus pyogenes, Pseudomonas, etc.).

In the composition of Bacteriocin 3xBiotics we find many active principles that have as main action the inhibition of bacterial activity, viral (recent studies at Rockeffeller University have shown that there are 3 bacteria in the intestinal microbiome whose metabolites, isopentenyl adenosine, pyrazine, 5-hydroxytryptamine, have the effect of blocking more than 90% of SARS-CoV-252) and fungal infection.

Bacteriocina 3xBiotics becomes an ideal therapeutic option for patients who have intolerances, allergies to the administration of classic antibiotics or who have developed resistance to them.

Referencias bibliográficas

  1. Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Fronteras en microbiología, 5, 241. https://doi.org/10.3389/fmicb.2014.00241
  2. Ventola C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, 40(4), 277–283. The Antibiotic Resistance Crisis (nih.gov)
  3. Willcox, M. (2009). Artemisia species: from traditional medicines to modern antimalarials—and back again. El Diario de Medicina Alternativa y Complementaria, 15(2), 101-109. https://doi.org/10.1089/acm.2008.0327
  4. Martini, M. C., Zhang, T., Williams, J. T., Abramovitch, R. B., Weathers, P. J., & Shell, S. S. (2020). Artemisia annua and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium tuberculosis. Revista de Etnofarmacología, 262, 113191. https://doi.org/10.1016/j.jep.2020.113191
  5. Mathlouthi, A., Saadaoui, N., & Ben-Attia, M. (2021). Essential oils from Artemisia species inhibit biofilm formation and the virulence of Escherichia coli EPEC 2348/69. bioincrustaciones, 37(2), 174-183. DOI:1080/08927014.2021.1886278
  6. El-Sayed, M. A., BaAbbad, R., Balash, A., Al-Hemdan, N. A., & Softah, A. (2013). The potential anti Helicobacter pylori and antioxidant effects of Artemisia judaica. Alimentos funcionales en salud y enfermedad, 3(9), 332-340. DOI: 31989/ffhd.v3i9.42
  7. Suganthi Appalasamy, Kiah Yann Lo, Song Jin Ch’ng, Ku Nornadia, Ahmad Sofiman Othman, Lai-Keng Chan, “Antimicrobial Activity of Artemisinin and Precursor Derived from in vitro Plantlets of Artemisia annua“, Investigación BioMed Internacional, vol. 2014, Article ID 215872, 6 pages, 2014. https://doi.org/10.1155/2014/215872
  8. Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. Revista internacional de medicina herbaria, 4(4), 59-64. DOI:13140/RG.2.1.1395.6085
  9. Hamaguchi, T., Ono, K., & Yamada, M. (2010). Curcumin and Alzheimer’s disease. CNS neuroscience & therapeutics, 16(5), 285-297. https://doi.org/10.1111/j.1755-5949.2010.00147.x
  10. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. El diario de la AAPS, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8
  11. Henrotin, Y., Priem, F. & Mobasheri, A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springer Plus 2, 56 (2013). https://doi.org/10.1186/2193-1801-2-56
  12. Gianfaldoni, S., Wollina, U., Tirant, M., Tchernev, G., Lotti, J., Satolli, F., Rovesti, M., França, K., & Lotti, T. (2018). Herbal Compounds for the Treatment of Vitiligo: A Review. Revista macedonia de ciencias médicas de acceso abierto, 6(1), 203–207. https://doi.org/10.3889/oamjms.2018.048
  13. Nardo, V. D., Gianfaldoni, S., Tchernev, G., Wollina, U., Barygina, V., Lotti, J., Daaboul, F., & Lotti, T. (2018). Use of Curcumin in Psoriasis. Revista macedonia de ciencias médicas de acceso abierto, 6(1), 218–220. https://doi.org/10.3889/oamjms.2018.055
  14. Sandhya A. Marathe, Rupesh Kumar, Parthasarathi Ajitkumar, Valakunja Nagaraja, Dipshikha Chakravortty, Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonela Typhimurium and Salmonela Typhi, Revista de quimioterapia antimicrobiana, Volume 68, Issue 1, January 2013, Pages 139–152, https://doi.org/10.1093/jac/dks375
  15. V. B. Martins, D. L. da Silva, A. T. M. Neres, T. F. F. Magalhães, G. A. Watanabe, L. V. Modolo, A. A. Sabino, Â. de Fátima, M. A. de Resende, Curcumin as a promising antifungal of clinical interest, Revista de quimioterapia antimicrobiana, Volume 63, Issue 2, February 2009, Pages 337–339, https://doi.org/10.1093/jac/dkn488
  16. Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Investigación antiviral, 142, 148-157. https://doi.org/10.1016/j.antiviral.2017.03.014
  17. Kutluay, S. B., Doroghazi, J., Roemer, M. E., & Triezenberg, S. J. (2008). Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virología, 373(2), 239-247. https://doi.org/10.1016/j.virol.2007.11.028
  18. Chen, T. Y., Chen, D. Y., Wen, H. W., Ou, J. L., Chiou, S. S., Chen, J. M., … & Hsu, W. L. (2013). Inhibition of enveloped viruses infectivity by curcumin. Más uno, 8(5), e62482. https://doi.org/10.1371/journal.pone.0062482
  19. English, J. Candida Yeast Protection Program. https://nutritionreview.org/2013/04/candida-yeast-protection-program-part2/
  20. Swicegood, C. Mother Nature’s Gift. AFA pájaro guardián, 28(2), 27-28. https://journals.tdl.org/watchbird/index.php/watchbird/article/view/1635
  21. Kothari, V. (2013). Bioactive compounds from plant seeds/seed extracts. Introduction to functional food science, 1st edn. Food Science Publisher, Texas, 86-93. (PDF) Bioactive compounds from plant seeds / seed extracts (researchgate.net)
  22. Tsutsumi-Arai, C., Takakusaki, K., Arai, Y., Terada-Ito, C., Takebe, Y., Imamura, T., … & Satomura, K. (2019). Grapefruit seed extract effectively inhibits the Candida albicans biofilms development on polymethyl methacrylate denture-base resin. Más uno, 14(5), e0217496. https://doi.org/10.1371/journal.pone.0217496
  23. Zayachkivska, O. S., Konturek, S. J., Drozdowicz, D., Konturek, P. C., Brzozowski, T., & Ghegotsky, M. R. (2005). Gastroprotective effects of flavonoids in plant extracts. Journal of Physiology and Pharmacology. Supplement, 56(1), 219-231. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-25fb8a4c-a050-41eb-b0bd-9ca34f9572e0
  24. Wang, W., & Sun, Y. (2017). In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Ciencia y Tecnología de los Alimentos, 37, 681-685. https://doi.org/10.1590/1678-457X.30816
  25. Tran, G. B., Pham, T. V., & Trinh, N. N. (2019). Black garlic and its therapeutic benefits. Plantas Medicinales-Uso en la Prevención y Tratamiento de Enfermedades. Black Garlic and Its Therapeutic Benefits | IntechOpen
  26. Fratianni F, Riccardi R, Spigno P, Ombra MN, Cozzolino A, Tremonte P, Coppola R, Nazzaro F. Biochemical Characterization and Antimicrobial and Antifungal Activity of Two Endemic Varieties of Garlic (Allium sativum L.) of the Campania Region, Southern Italy. J Med Food. 2016 Jul;19(7):686-91. DOI: 1089/jmf.2016.0027
  27. Guo, Y. (2014). Experimental Study On The Optimization Of Extraction Process Of Garlic Oiland Its Antibacterial Effects. African Journal of Traditional, Complementary and Alternative Medicines, 11(2), 411-414. DOI: 4314/ajtcam.v11i2.27
  28. Zhang, Y., Wu, Y. T., Zheng, W., Han, X. X., Jiang, Y. H., Hu, P. L., … & Shi, L. E. (2017). The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. revista de alimentos funcionales, 38, 273-279. https://doi.org/10.1016/j.jff.2017.09.047
  29. Duarte, N., Ferreira, M. J. U., Martins, M., Viveiros, M., & Amaral, L. (2007). Antibacterial activity of ergosterol peroxide against Mycobacterium tuberculosis: dependence upon system and medium employed. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(7), 601-604. https://doi.org/10.1002/ptr.2119
  30. Wong, J. H., Ng, T. B., Wang, H., Sze, S. C. W., Zhang, K. Y., Li, Q., & Lu, X. (2011). Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. fitomedicina, 18(5), 387-392. https://doi.org/10.1016/j.phymed.2010.07.010
  31. Li, Z., Shi, Y., Zhang, X., Xu, J., Wang, H., Zhao, L., & Wang, Y. (2020). Screening immunoactive compounds of Ganoderma lucidum spores by mass spectrometry molecular networking combined with in vivo zebrafish assays. Fronteras en farmacología, 11, 287. https://doi.org/10.3389/fphar.2020.00287
  32. Li, W. J., Nie, S. P., Liu, X. Z., Zhang, H., Yang, Y., Yu, Q., & Xie, M. Y. (2012). Antimicrobial properties, antioxidant activity and cytotoxicity of ethanol-soluble acidic components from Ganoderma atrum. Toxicología Alimentaria y Química, 50(3-4), 689-694. https://doi.org/10.1016/j.fct.2011.12.011
  33. Nayak, A., Nayak, R. N., & Bhat, K. (2010). Antifungal activity of a toothpaste containing Ganoderma lucidum against Candida albicans-an in vitro study. Salud Bucal Interna J, 2(2), 51-57. http://listamester.hu/store/5207/ganozhi_toothpaste.pdfangol.pdf
  34. Eo, S. K., Kim, Y. S., Lee, C. K., & Han, S. S. (1999). Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum. Revista de etnofarmacología, 68(1-3), 175-181. https://doi.org/10.1016/S0378-8741(99)00086-0
  35. El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., … & Otake, T. (1998). Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. fitoquimica, 49(6), 1651-1657. https://doi.org/10.1016/S0031-9422(98)00254-4
  36. Ren, L., Zhang, J., & Zhang, T. (2021). Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Química de Alimentos, 340, 127933. https://doi.org/10.1016/j.foodchem.2020.127933
  37. Rathee, S., Rathee, D., Rathee, D., Kumar, V., & Rathee, P. (2012). Mushrooms as therapeutic agents. Revista Brasileña de Farmacognosia, 22, 459-474. https://doi.org/10.1590/S0102-695X2011005000195
  38. Shahsavari, N., Barzegar, M., Sahari, M.A. et al.Antioxidant Activity and Chemical Characterization of Essential Oil of bunium persicum . Alimentos vegetales Hum Nutr 63, 183–188 (2008). https://doi.org/10.1007/s11130-008-0091-y
  39. Sekine, T., Sugano, M., Majid, A., & Fujii, Y. (2007). Antifungal effects of volatile compounds from black zira (Bunium persicum) and other spices and herbs. Diario de ecología química, 33(11), 2123-2132. DOI:1007/s10886-007-9374-2
  40. Oniga, I., Pușcaș, C., Silaghi-Dumitrescu, R., Olah, N. K., Sevastre, B., Marica, R., … & Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Moléculas, 23(8), 2077. https://doi.org/10.3390/molecules23082077
  41. Bedoya-Serna, C. M., Dacanal, G. C., Fernandes, A. M., & Pinho, S. C. (2018). Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: in vitro study and application in Minas Padrão cheese. revista brasileña de microbiología, 49, 929-935. https://doi.org/10.1016/j.bjm.2018.05.004
  42. Benedec D, Vlase L, Oniga I, Mot AC, Damian G, Hanganu D, Duma M, Silaghi-Dumitrescu R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules. 2013 Jul 24;18(8):8725-39. DOI: 3390/molecules18088725
  43. Tusevski, Oliver, Kostovska, Aneta, Iloska, Ana, Trajkovska, Ljubica and Simic, Sonja. “Phenolic production and antioxidant properties of some Macedonian medicinal plants” Ciencias de la vida abiertas, vol. 9, no. 9, 2014, pp. 888-900. https://doi.org/10.2478/s11535-014-0322-1
  44. Hazem, A., Pitică-Aldea, I. M., Popescu, C., Matei, L., Dragu, D., Economescu, M., … & Lupuliasa, D. (2017). The antiviral/virucidal effects of alcoholic and aqueous extracts with propolis. Farmacia, 65(6), 868-76. https://farmaciajournal.com/wp-content/uploads/2017-06-art-08-Hazem_Popescu_Lupuliasa_868-876.pdf
  45. Fernandes, F. H., Guterres, Z. D. R., Violante, I. M., Lopes, T. F., Garcez, W. S., & Garcez, F. R. (2015). Evaluation of mutagenic and antimicrobial properties of brown propolis essential oil from the Brazilian Cerrado biome. Informes de toxicología, 2, 1482-1488. https://doi.org/10.1016/j.toxrep.2015.11.007
  46. Peter, C. M., Waller, S. B., Picoli, T., Osório, L. G., Zani, J. L., Meireles, M. C. A., … & Fischer, G. (2019). Chemical and cytotoxic analyses of three varieties of Brazilian propolis (green propolis, jataí propolis and brown propolis) and its anti-Sporothrix brasiliensis in vitro activity. Archivo Brasileño de Medicina Veterinaria y Zootecnia, 71, 819-827. https://doi.org/10.1590/1678-4162-9918
  47. Carrasco-Gallardo, C., Guzmán, L., & Maccioni, R. B. (2012). Shilajit: a natural phytocomplex with potential procognitive activity. Revista internacional de la enfermedad de Alzheimer, 2012. https://doi.org/10.1155/2012/674142
  48. Meena, H., Pandey, H. K., Arya, M. C., & Ahmed, Z. (2010). Shilajit: A panacea for high-altitude problems. Revista internacional de investigación de Ayurveda, 1(1), 37–40. https://doi.org/10.4103/0974-7788.59942
  49. Stohs, S. J., Singh, K., Das, A., Roy, S., & Sen, C. K. (2017). Energy and Health Benefits of Shilajit. In Energía sostenida para funciones y actividades humanas mejoradas(pp. 187-204). Academic Press. https://doi.org/10.1016/B978-0-12-805413-0.00012-0
  50. Pant, K., Singh, B., & Thakur, N. (2012). Shilajit: a humic matter panacea for cancer. http://14.139.206.50:8080/jspui/bitstream/1/4138/1/shilajit-a-panacea-for-cancer.pdf
  51. Carrasco-Gallardo, C., Farías, G. A., Fuentes, P., Crespo, F., & Maccioni, R. B. (2012). Can nutraceuticals prevent Alzheimer’s disease? Potential therapeutic role of a formulation containing shilajit and complex B vitamins. Archivos de investigación médica., 43(8), 699-704. https://doi.org/10.1016/j.arcmed.2012.10.010
  52. Piscotta, F. J., Hoffmann, H. H., Choi, Y. J., Small, G. I., Ashbrook, A. W., Koirala, B., Campbell, E. A., Darst, S. A., Rice, C. M., & Brady, S. F. (2021). Metabolites with SARS-CoV-2 Inhibitory Activity Identified from Human Microbiome Commensals. mEsfera, 6(6), e0071121. https://doi.org/10.1128/mSphere.00711-21
0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja una Respuesta

Su dirección de correo electrónico no será publicado. Los campos necesarios están marcados *